A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

نویسندگان

  • Cheng Yuan
  • Cui Li
  • Lijie Yan
  • Andrew O. Jackson
  • Zhiyong Liu
  • Chenggui Han
  • Jialin Yu
  • Dawei Li
چکیده

Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virus vector for gene silencing in wheat.

Wheat, rice, and maize account for more than 85% of the world’s cereal production (apps.fao.org/default.jsp), and the increasing global demand for wheat heightens the need for new varieties with improved disease resistance, tolerance to abiotic stresses, and grain quality. Incorporation of such desirable traits via biotechnological approaches first requires thorough characterization of genes an...

متن کامل

Sugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana

Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...

متن کامل

Journal of Biotech Research [ISSN: 1944-3285]

Virus-induced gene silencing (VIGS) is a powerful reverse genetics tool wherein the expression of a targeted gene is reduced by a viral vector in a sequence homology-dependent manner. A VIGS system using a modified Barley stripe mosaic virus (BSMV) has been developed and successfully employed in the functional characterization of genes in monocots. There are several inherent limitations to the ...

متن کامل

Glycerol-3-Phosphate Metabolism in Wheat Contributes to Systemic Acquired Resistance against Puccinia striiformis f. sp. tritici

Glycerol-3-phosphate (G3P) is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR). The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH) and GLI1-encoded glycerol kinase (GK) are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In th...

متن کامل

Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley.

We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011